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Abstract-The transfer equations and Fourier law analogues have been obtained for three types of non- 
local media : media with heat memory, spatially non-local media and media with a discrete structure. The 
conditions are specified under which these equations reduce into each other or to familiar transfer equations, 
such as the classical parabolic-type transport equation and ‘telegraph’ equation. It is shown that the type 
of partial differential equations derived from discrete transfer equations is governed by the limiting 
transition law, i.e. by the relationship between the time, z, and space, h, scales of the medium internal 
structure. In the case of the ‘diffusional’ law of limiting transition, when the thermal diffusivity coefficient 
a = h2/4T = const for z, h -+ 0, the discrete equations yield parabolic-type partial differential equations, 
whereas with the ‘wave’ law of limiting transition, when the heat wave speed c = h/2T = const < 00 for T, 

h + 0, they yield partial differential equations of hyperbolic type. 

1. INTRODUCTION 

CLASSICAL thermodynamics, like continuum mech- 
anics, is based on the principle of locality. According 
to this principle, the fundamental laws of ther- 
modynamics hold not only for the body considered as 
a whole, but also for each, however small, of its parts 
[ 1,2]. The locality principle implies that such a med- 
ium does not have its own internal structure, and 
this allows one to perform limiting transition to an 
infinitesimal volume when passing from the integral 
to the most practical differential form of conservation 
laws. Moreover, classical non-equilibrium thermo- 
dynamics uses the principle of local thermo- 
dynamic equilibrium which means that the entire 
system can be divided into fairly small, but still macro- 
scopic areas, which represent equilibrium ther- 
modynamic systems. Consequently, physically infini- 
tesimal areas of a totally non-equilibrium system are 
described in the same way as equilibrium systems 
[l, 21, i.e. locally equilibrium systems can be treated 
as local in time. 

Classical thermodynamics, based on the space-time 
locality principles, rests on the Fourier law 

4(&t) = -nvT(z,r), 

where (z is the heat flux, T the temperature, and 1 the 
heat conduction coefficient. The Fourier law and the 
energy conservation law in differential form yield a 
transfer equation of parabolic type. It is obvious that 
this equation adequately describes transfer processes 
only under the conditions when the approximations 
of local thermodynamic equilibrium and spatial 
locality are fulfiled. Otherwise, the use of parabolic- 
type transfer equations can lead to false results. For 
example, it is known that this equation furnishes a 

physically incorrect conclusion about an infinitely 
large speed of propagation of a heat wave (heat 
signal), since a sharp change in temperature at a cer- 
tain space point is instantaneously perceived even at 
an infinitely distant point [2, 51. In real systems this 
speed has a finite, although still significant, value. 
Because of this for fast processes, the characteristic 
speed of which is comparable with the speed of heat 
wave propagation, the classical theory of transfer pro- 
cesses cannot be applied. In addition, the classical 
approach does not always adequately describe trans- 
fer processes in systems with a complex heterogeneous 
structure, such as polymers, capillary-porous media, 
liquid crystals, suspensions, pastes, etc. In this case, 
the principle of spatial locality can be violated when 
the characteristic scale of the process of transfer 
becomes comparable with that of the internal struc- 
ture of the medium. A similar situation occurs in 
plasma [12] or in a solid body [13] exposed to laser 
radiation where the electron or phonon-free path 
plays the role of the scale of internal structure (non- 
locality scale). 

There exist a number of versions of locally non- 
equilibrium theories, i.e. the theories which do not 
rest upon the principle of local equilibrium. Among 
these, the most developed and consistent seem to be 
the ‘extended irreversible thermodynamics’ [2, 31 and 
‘rational thermodynamics’ [4]. Moreover, there are 
many works in the literature that employ various 
kinetic, thermodynamic, phenomenological, and 
some other methods for describing locally non-equi- 
librium systems ; references to which can be found in 
refs. [l-l 11. In the study of spatial non-locality [12, 
131 and space-time discreteness [6,14,15] of transfer 
processes only the initial steps have been undertaken. 

Recently, in the different fields of physics, chem- 
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NOMENCLATURE 

1 

A constant value 
a = h’/4z thermal diffusivity 
c = h/2z speed of heat wave 

CP heat capacity 
E internal energy 
h characteristic scale of spatial non- 

locality 

; heat flux non-locality function 
K(Z) heat flux relaxation function 
L macroscale 

4 heat flux 
T temperature 
t time 

V characteristic velocity (e.g. velocity of 
heat source motion) 

W heat source intensity 
B coordinate. 

Greek symbols 

P(=) internal energy relaxation function 
-, 1 internal energy non-locality function 
i, heat conduction coefficient 

P density 
1 lime of relaxation to local 

thermodynamic equilibrium. 

istry, biology and the like, a great number of non- 
local systems have been discovered [2, S-7, 12, 131, 
the description of which requires appropriate transfer 
equations. On the one hand, such non-local equations 
should have the simplest possible form convenient for 
specific calculations, and, on the other, they should 
take into account the main specific features of the 
given system. Thus, for example, very often the non- 
local theories do not take into consideration the pres- 
ence in the system of heat (mass) sources which in real 
systems exert a decisive influence on transfer 
processes. The present work considers equations of 
transfer in three types of non-local media which are 
most widespread in practice : locally non-equilibrium 
media (or media with memory), spatially non-local 
media and discrete-structure media. 

For such systems the equations of transfer are 
obtained in a general form ; certain simplest particular 
cases are considered, and conditions of reduction to 
classical local equations are specified. Wherever poss- 
ible the inter-relation between different types of non- 
local equations is shown. 

2. LIMITS OF APPLICABILITY OF THE LOCAL 

THEORIES OF TRANSFER PROCESSES 

The approximation of local thermodynamic equi- 
librium implies that in each small medium element 
there exists the condition of local equilibrium which 
can be described by a local equilibrium distribution 
function. The entropy of such a condition is the same 
function of macroscopic variables as for ‘an equi- 
librium system [ 1, 21. The local thermodynamic equi- 
librium can develop in a system the rate of variation of 
its macroparameters due to external effects, chemical 
reactions, phase transition, etc. (i.e. the rate of equi- 
librium violation) which is much smaller than the 
rate of equilibrium establishment in a local volume. 
Moreover, the local thermodynamic equilibrium 
approximation holds for the time moments, t, sig- 
nificantly exceeding the characteristic time of system 

relaxation towards the local equilibrium r* [I]. These 
conditions can be written in the following form : 

T/(aT/SX) >> h, (1) 

T/(aT/at) >> z*, (2) 

where h, is the characteristic relaxation length, i.e. the 
scale of the processes of local equilibrium estab- 
lishment (for gases, this is the mean free path of mol- 
ecules) 

As noted above, it follows from the locality prin- 
ciple that the system does not have its own internal 
discrete structure and it can be considered as the con- 
tinuum. Strictly speaking, from the physical point of 
view, this statement is inaccurate, since a medium 
always consists of separate elements: atoms, 
molecules, cells or some other more complex sub- 
systems. However, if the characteristic macroscale 
of the system is much in excess of the characteristic 
size of its microstructure h,, i.e. 

L >> h, (3) 

then the discrete structure of this system may be neg- 
lected and it can be considered to be a continuous 
(local) medium. For gases, the value h, is of the order 
of the free path of molecules. In this case inequality 
(3) is equivalent to inequality (I), and the local ther- 
modynamic equilibrium approximation is equivalent 
to that of continuum (generally speaking, the reverse 
can be incorrect). Such a correspondence will be 
observed in other systems if h, c h,>. 

Let us consider inequalities (l)-(3) for the case 
when a heat source moves in a medium with a constant 
velocity V. Here the temperature profile is formed as 
a travelhng wave with a characteristic front width 
f. = a/V (where a is the thermal diffusivity) and 
characteristic time t* = a/V2 [6, 71. Then inequalities 
(l)-(3) will acquire the form [6, 71 

a/V x h, u/v2 >> F. (4) 

Taking into account the fact that T* is related to the 
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speed of heat wave (thermal disturbances) 
c = (u/z*)“’ [2, 51 and that h = r*c, it will be shown 
that inequalities (4) are equivalent to the inequality 

Thus, the locality and local thermodynamic equi- 
librium principles are valid if the speed of the heat 
source motion (the characteristic speed of the mac- 
reprocess) V is much smaller than that of the heat 
wave (heat signal) C. In other words, in local theories, 
an infinite speed of heat wave propagation is assumed, 
which corresponds to the above-mentioned ‘paradox 
of instantaneous heat propagation’. The non-local 
theories that take into account the finite speed of heat 
wave (i.e. thermal disturbances) can be considered in 
this sense as relativistic with respect to the classic 
theories. 

3. MEDIA WITH HEAT MEMORY 

One of the most general models of locally non- 
equilibrium media with a finite speed of heat wave 
propagation involve the media with heat memory [l, 
4-l 11. In such media the heat flux 4 (x, t) and the 
internal energy E (_X?, t) depend not on instantaneous 
values of the gradient and temperature, as in equi- 
librium media, but are determined by the whole pre- 
history of the heat transfer in the considered medium 
element (such media can also be called non-local in 
time) 

s 

X> 
4(X, t) = - K(z) VT@, t-z) dz (5) 

0 

E(x,t) = C,,pY’(x,,)+ 
s 

=/I(z)T(X,r-z)dz, (6) 
0 

where K (2) and p (z) are the relaxation functions of 
heat flux and internal energy, respectively. The heat 
flux and internal energy of the system are inter-related 
by the law of energy conservation : 

aE 
-= -divg(k,t)+W(X,Q, 
at (7) 

where W(& t) is the intensity of energy sources dis- 
tributed throughout the system. Equations (5))(7) 
yield several versions of the heat conduction equations 
for media with heat memory that correspond to vari- 
ous thermodynamic restrictions [ 1, 4111. In ref. [9] 
the hyperbolic-type heat conduction equation with a 
finite speed of heat wave (heat signal) propagation, 
c = (K (0)/Cpp)1!2 is considered. In ref. [lo] the depen- 
dence of heat flux on instantaneous temperature gradi- 
ent in relation (5) was isolated in explicit form, and, 
based on this, a parabolic-type equation of heat con- 
duction were obtained. In refs. [6, 71 heat conduction 
equations (5))(7) were suggested for a medium with 
memory which represents a combination of two 
above-mentioned equations : 

7*c,,,s+ 
s 
m [r*K’(z)+K(z)] AT(& t-z) dz 
0 

= z*P’(z)+/?(z) aT(;tt-z)dz 
1 - 

+z*K(O)AT+ W+r*;y. (8) 

Equation (8) is of hyperbolic type, which reflects the 
wave character of heat propagation in media with 
memory. Equation (8) involves both the source func- 
tion itself W(x, t) and also its derivative a W/at, which 
is the consequence of the inertia properties of heat 
conduction in such media. 

With the exponential function of heat flux relax- 
ation 

K(z) = K(0) exp (- z/~*) (9) 

relation (5) corresponds to the MaxwelKattaneo law 
]2, 51 : 

aq (x 4 4(X t)+r*at = -nvqs, t), (10) 

where 1 = z*K(O) is the thermal conductivity 
coefficient. The characteristic time of heat flux relax- 
ation r* in equation (9) corresponds to the time of 
system relaxation towards the local equilibrium in 
equation (10). Assuming further that the internal 
energy relaxation function b(z) = 0, we shall obtain 
from equation (8) a hyperbolic-type heat conduction 
equation, the so-called ‘telegraph’ equation [2, 5, 71 : 

This equation, just like with the generalized equation 
(8), involves both diffusional properties of the heat 
conduction process (energy dissipation) and wave 
properties (heat wave propagation with a finite speed). 
When r* + 0 equation (11) yields the classical locally 
equilibrium parabolic-type heat conduction equation 
(diffusion equation) which can also be obtained from 
equation (8) if T* -+ 0 and K(0) + cc so that 
/1 = T*K(O) = const > 0. In this case K(z) -+ S(z). 
where 6 (z) is the Dirac delta function, and relation 
(5) is reduced to the classical Fourier law. Thus, a 
hyperbolic-type heat conduction equation (11) (‘tele- 
graph’ equation) which describes the space-time tem- 
perature distribution in locally non-equilibrium 
systems, can be obtained on the basis of various 
approaches (see refs. [l-7] and the references therein). 
This indicates its universality and possible wide range 
of practical application [2, 5-71. 
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4. NON-LOCAL MEDIA 

In general, the processes of transfer are non-local 
by their nature, i.e. non-local energy (or substance) is 
transferred from one point of space to another. If 
the characteristic scale of the internal structure of a 
heterogeneous system or the mean free path of the 
particles transporting the energy (of phonons and 
electrons) becomes commensurable with the scale of 
the transfer process, then the non-local effects become 
significant, and this should be taken into account 
when describing the dynamics of such systems. In this 
case, the heat flux at a given point of space depends 
on the temperature gradient throughout the entire 
system [12. 131: 

4(x,?) = - 
s 

j(8-~)VT(&t)do, (12) 

wherej is the heat flux non-locality function. In other 
words the non-local media described by equation (12) 
can be considered as media with spatial memory [see 
equation (5)]. If the system possesses both spatial and 
temporal memory, then the expressions for the heat 
flux and internal energy are of the following form [6] : 

ss 

a 
q(‘F,t) = - j(&<,z)VT([,t-z)dudz 

L 0 

E(R, t) = C,pT(B, t) 

ss 

50 
+ y(zJ- <, z) T(t, t-z) do dz. 

t 0 

Further, consider that the system is non-local only 
in space. Then, by analogy with equation (16), the 
following relation can be written (one of the simplest 
cases of space-time non-locality is considered in Sec- 
tion 5) : 

E(T, t) = C,pT(x, t) + 7(x- 4) T(<, r) dc. (13) 

The heat flux, 4, and internal energy, E, are inter- 
related by the energy conservation law. Since the 
differential energy conservation equation (7) was 
obtained in the local approximation, then in non- 
local media one should use an integral form of the 
conservation law : 

; 
s 

E(&t)dt>= j$q(T.,)dS+j w(8,t)dp. (14) 

From equations (13) and (14) we obtain a non-local 
transfer equation in the general form 

= ss j(R- s)VT(g, t) dc dS+ W(8, t) dc. 
5 L s 

The form of the corresponding non-locality functions 

is determined by specific features of the heat transfer 
process in a given particular system. 

4.1. Example 
As an example consider a one-dimensional case 

assuming that the non-locality function of the heat 
fluxj is even [12, 131, i.e. the effect of non-locality on 
the heat transfer process is symmetric about the given 
point of space. Then, from equation (12) we obtain 

q(X, t) = 
s 

m.i(z)~(T(X-z; t)--T(X+z, t))di. 
0 

From the fundamental postulates of thermodynamics 
it follows that the spatial memory, like the memory in 
time [equation (9)], should be of damping character 
[ 11. Consequently, it may be considered that [ 121 

j(3) = Aexp(-z/h). (15) 

Here h is the characteristic non-locality scale and 
A = const. After some transformations, we obtain 
that at 2hA = 3. 

q(X,t) = -,~-z?$.... (16) 

In a local medium, when h = 0, relation (16) is 
reduced to the classical Fourier law. The second and 
subsequent terms on the right-hand side of equation 
(16) represent a correction to the Fourier law to take 
into account the spatial non-locality of transfer pro- 
cesses. 

In addition, the spatial non-locality of the transfer 
process leads to an alternative differential form to 
represent the energy conservation law in comparison 
with the classical form of equation (7). In fact, in the 
considered case, the integration volume in the integral 
conservation law (14) cannot be allowed to approach 
zero, because it is limited from below by the volume 
with the characteristic linear dimension of the order 
of the non-locality length h. In a one-dimensional 
case, it follows from equation (14) that 

d 

-j 

, +,i 

dt 
E(X, t) dX = 4(X-h, t)-q(X+h, t) 

\-ii 

\ + h 
+ 

s 
W(X, t) dX. 

t--h 

The Taylor expansion in terms of the powers /z yields 

=-g 

hZ 8q _--_ 
6 ?X’ “’ 

+w+;g. (17) 

Expression (17) represents a differential form of the 
energy conservation law for a non-local medium with 
the characteristic scale h. When h -+ 0, equation (17) 
is reduced to the classical form of the local con- 
servation law (7). Excluding the heat flux q from equa- 
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tions (16) and (17) gives a heat conduction equation 
for a non-local medium with an exponential relaxation 
function (15) : 

a3T cppg+cpph’- = atax 
ig+@s 

+W+~~+O(lt“). (18) 

Thus, to describe non-local systems, the energy (mass) 
conservation law should be used in a non-local inte- 
gral [equation (14)], or differential [equation (17)] 
form. With the exponential non-locality function (15), 
the analogue of the Fourier law (16) and heat con- 
duction equation (18) contain higher derivatives of T 
and Win comparison with the local case. 

5. MEDIA WITH DISCRETE STRUCTURES 

The systems which are non-local both in time and 
in space represent natural generalizations of the mod- 
els of non-local systems considered in the preceding 
sections. The space-time non-locality originates when 
the time of system relaxation to the local ther- 
modynamic equilibrium 7* becomes commensurable 
with the characteristic time of the transfer process t*, 
whereas the microscale of the internal structure of 
the medium h commensurable with the characteristic 
macroscale L of the process (see Section 2). The sim- 
plest examples of systems with space-time non- 
locality are furnished by media with discrete struc- 
tures, in which the processes of transfer can be 
described by the random walk model (see refs. [6, 7, 
14, 151 and the references therein). Based on this 
model, the authors in refs. [ 14,151 suggested equations 
of heat conduction in inert media (i.e. in media with- 
out heat sources). Of greatest interest for the theory 
of transfer processes and for its practical application 
are active media with distributed energy sources. 
Moreover, in refs. [14, 151 various versions of the 
limiting transition from the discrete transfer equation 
to its approximations of different accuracy in the form 
of partial differential equations were not taken into 
account. As it will be shown, the specific features of 
such a limiting transition determine the type of partial 
differential equations, and, consequently, certain fun- 
damental properties of their solutions. To obtain a 
discrete transfer equation in a non-local active med- 
ium use will be made of the random walk model sup- 
plemented with the concepts of energy sources dis- 
tributed in a system [6, 71. 

Consider a two-dimensional heat transfer process in 
a medium consisting of particles performing random 
walks. The distance over which a particle (phonon) 
carries energy for a single act of walking h is 
the microscale, characterizing the discrete spatial 
structure of heat transfer. The time between two 
successive acts of walking 7 is the scale of the time 
discreteness of heat transfer (it will be shown below 

that 7/z = 7* can be considered as the time of system 
relaxation to local thermodynamic equilibrium). The 
probabilities of the particle motion in four possible 
directions Will be denoted as P,, P2, P,, and p4, with 

PI + f’2 + p, + Pa = 1. If the probability that the par- 
ticle at time t+ r will be found within a certain element 
of the medium f is u (2, t + z), then 

u(Xt++) = P,u(X,+h,X*,t)+P,u(X,--,X*,t) 

+PIU(X,,X*+h,t)+P,u(X,,Xz-hh,t). (19) 

Equality (19) means that for one time step the particle 
can get into the medium element, 2, only from adjac- 
ent elements. Assuming further that the local internal 
energy of the medium is proportional to the number 
of particles (phonons) in a given discrete medium 
element [14, IS] and to the intensity of the distrib- 
uted energy sources F(J?, t) [6, 71, equation (19) will 
yield 

+ P, T(X, , X2 + h, t) + P4 7-(X,, X2 -k t) + F(f, t). 

(20) 

Expression (20) represents a discrete heat transfer 
equation with distributed energy sources. Note that 
the discrete structure of this equation determines the 
finite propagation speed of thermal disturbances (heat 
wave) c = h/7. Based on the random walk model, we 
can also obtain the relationship between the heat flux 
Q (X, t) and temperature T(z, t) in a discrete form (the 
discrete analogue of the Fourier law) : 

\ L/ 

hC,p T(X, +W,X,,t)-T(X, -h/2,X,, t) =__ 
47 ( T(X, , X, + h/2, t) - T(X, , X2 -h/2, t) 

(21) 

From now on it will be assumed for simplicity that the 
medium is isotropic, i.e., P, = P2 = P, = P4 = l/4. It 
follows from physical considerations that heat flux in 
a medium with discrete time and space represents an 
amount of heat energy carried per unit of time through 
a unit surface of the considered medium element 
between two successive time moments t and t + 7 when 
the system was in a state with a certain temperature. 
Therefore, in relation (21) the heat flux 4 (2, t+7/2) 
is presented at the intermediate instant of time t + r/2, 
and the temperature in the right-hand side of equation 
(21) is taken at the boundaries of the given element at 
the points X+ h/2 and X-h/2. Note that the latter 
circumstance is insignificant when analysing transfer 
processes in discrete form, since, by discrete model 
definition, the temperature over the interval of length 
h is constant, i.e. T(X, f h/2, X2, t) = T(X, + h, X,, t), 
T(X,, X2 + h/2, t) = T(X,, X, + h, t). The shift by h/2 is 
required for limiting transition from a discrete form 
of transfer equations to partial differential equations, 
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as done below. For this purpose it is necessary to 
couple the heat function in discrete equation (24) 
F(z, t) with the heat function corresponding to the 
differential transfer equation. First, it should be noted 
that the theories of coupled maps [16] and cellular 
automata [ 171 rely on the following discrete equation, 
which is similar in form to equation (20) : 

O(f,t+t) =~[H(X,+h.X2t)+e(X,-h.X,,I) 

-40 (X01 +f (0 (8, f)), (22) 

where 0 (J?, t) represents the dynamic variable, D is a 
positive constant proportional to the phenom- 
enological diffusion coefficient, f(Q (Z, t)) = 
0 (X, t+ r) is the single cell dynamic function. 
The function f(Q) is the solution semigroup corres- 
ponding to the ordinary differential equation 
d0/dt = W(0) [17]. From this it follows that 

e(x,t+7) = s m IV@, t) dt =f(e) (23) 
II 

.f@(X t)) = f-(X, t) + e (X, t). (25) 

Relation (25) shows that at D = 1 discrete equations 
(20) and (22) coincide. Note that, for transfer 
processes, the phenomenological constant D = 1, and 
the diffusion coefficient (thermal diffusivity) is deter- 
mined by the relationship between z and h, as shown 
below. Discrete transfer equations (20) and (22), as 
well as the discrete analogue of the Fourier law (21), 
can be employed for the analysis of transfer processes 
directly in discrete form, which is particularly con- 
venient for numerical simulation, since equations 
(20)-(22) do not require translation into the language 
of discrete mathematics. Moreover, the discrete model 
allows one to describe a wider class of transfer pro- 
cesses than the parabolic-type classical equations, 
since it does not rely on the space-time locality prin- 
ciples. 

5.1. The relationship between the discrete model and 
partial differential equations 

In order to go from discrete equations to their par- 
tial differential approximations it is necessary to 
expand the functions T(& t), W(A?, t) and 4 (& t) in 
equations (20) and (21) into a Taylor series in powers 
of z and h (for simplicity, a one-dimensional case is 
considered). After some transformations, equations 
(20), (21) and (24) yield 

( aT 7 a=T 7= a3T 
CpP Tg+;s+6at’+..’ 

> 

(26) 

h;+=$+... (27) 

Partial differential equations (26) and (27) contain an 
infinite number of expansion terms. In order to get 
from (26) and (27), the equations with a finite number 
of terms, one should assign the limiting transition law, 
i.e. the relationship between r and h for r, h -+ 0. 

5.2. The diffusional law of limiting transition 
Usually when going from discrete transfer equa- 

tions to partial differential ones it is assumed that 
the thermal diffusivity (diffusion) coefficient a = H2/7 

remains a finite quantity when z, h + 0 (see refs. [14, 
151 and references therein). Such a law of the limit- 
ing transition will be called ‘diffusional’. Note that 
in this case the speed of heat signal (thermal disturb- 
ance) is c = h/z = a/h -+ co. Assuming further that 
1 = h2CPp/2z, from equations (26) and (27) we obtain 
in zero approximation with respect to r the classical 
relationships of the local-equilibrium thermodyna- 
mics, which are parabolic-type transfer equations 
(diffusion equation) and the Fourier law. 

In the first approximation with respect to 7, equa- 
tions (26) and (27) yield 

r 84 aT Ah2 a’T 
q+:z= -ljyyyx’. (29) 

The terms of equations (28) and (29) that contain 
the factor 7 reflect the local non-equilibrium state 
(temporal non-locality) of transfer processes. There- 
fore, such terms are absent both in the classical locally 
equilibrium equations and in non-local equations (16) 
and (18). The terms that involve the factor h2 describe 
the spatial non-locality and, therefore, similar terms 
are also present in equations ( 16) and (18) (the differ- 
ence in the numerical factors is due to the different 
forms of the non-locality functions adopted in these 
models). Note that in contrast to non-local equation 
(18) heat conduction equation (26), which takes into 
account the space-time non-locality of the system, 
does not involve either a mixed temperature deriva- 
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tive, or a space derivative of the source function w. 
This is due to the fact that the internal energy of the 
system and the intensity of the heat source in the heat 
transfer model for a discrete medium are assumed to 
be independent of the coordinate in each individual 
discrete medium element of size h. In the mode of non- 
local heat transfer (Section 3), the quantities E and W 
can vary over the distances of the order of the non- 
locality scale h. It is precisely this which leads to the 
appearance of appropriate derivatives in heat con- 
duction equation ( 18). 

Subsequent approximations of discrete heat trans- 
fer equations (26) and (27) will contain higher-order 
expansion terms. However, with the ‘diffusional’ law 
of limiting transition all these approximations, like 
the classical locally equilibrium equations and first 
approximations to discrete systems, equations (28) 
and (29), determine an infinitely large speed of propa- 
gation of the heat signal c. 

5.3. The ‘wave’ law of limiting transition 
Now consider the ‘wave’ law of limiting transition 

(6, 71 when the propagation speed of the heat signal 
(heat wave) remains finite for r, h -+ 0, i.e. 
c = h/z = const < co. In this case the thermal diffu- 
sivity a = h2/t -+ 0. 

In zero approximation with respect to r, equations 
(26) and (27) give 

These relationships imply, in this approximation, that 
the heat does not propagate throughout the system at 
all, and its temperature is entirely determined by an 
external heat source, and, certainly, by initial 
conditions. 

In a first approximation with respect to z and with 
the ‘wave’ law of limiting transition, equations (26) 
and (27) yield the following hyperbolic-type equations : 

In accordance with the ‘wave’ law of limiting tran- 
sition these equations determine the finite speed of 
heat signal propagation. Assuming 

CPpc2i = 1 and r* =G 

it can be seen that equation (30) coincides with the 
equation of transfer in a media with heat memory, 
equation (1 l), which involves an exponential function 
of heat flux relaxation, equation (9). Equation (31) 
coincides with the Maxwell-Cattaneo law, equation 
(10). The subsequent approximations of discrete heat 
transfer equations (20) and (21) in the case of the 

‘wave’ law of limiting transition will also yield partial 
difkential equations with the finite speed of hea; 
signal propagation. 

Thus, while going from discrete transport equations 
to their different accuracy approximations in the form 
of partial differential equations, one should assign the 
law of limiting transition, i.e. the relationship between 
the space-time scales of the internal structure of a 
medium. The law of limiting transition determines the 
type of equations and, consequently, certain fun- 
damental features of their solutions. Strictly speaking, 
the ‘wave’ law of limiting transition seems to be more 
justified, since it prescribes the finite speed of heat 
signal propagation which corresponds to both the ran- 
dom walk model itself and the physical sense of trans- 
fer processes in general. However, for sufficiently slow 
processes (see Section 2), when the characteristic 
speed of the process is small as compared to the speed 
of heat signal propagation, the ‘diffusional’ law of 
limiting transition may be employed. The fact that in 
the process of limiting transition discrete equation 
(20) gives hyperbolic-type transfer equation (30) or 
(1 l), i.e. the ‘telegraph’ equation, is a consequence of 
the discrete model not being on the principles of local 
equilibrium and spatial locality. It is precisely this 
which makes it possible to describe both locally equi- 
librium transfer processes and locally non-equilibrium 
or spatially non-local processes with the help of the 
discrete model, equations (20) and (21). 

6. CONCLUSIONS 

Equations of transfer in non-local media, namely, 
locally non-equilibrium media (media with memory), 
non-local media and media with discrete structure, 
significantly differ from the classical local transfer 
equations. In locally non-equilibrium systems (i.e. sys- 
tems with temporal non-locality), when the medium 
possesses heat memory (Section 3) or has a discrete 
structure (Section S), the corresponding transfer equa- 
tions determine the finite speed of heat signal propa- 
gation. This property also persists in partial differ- 
ential equations resulting from a discrete transfer 
equation in the case of the ‘wave’ law of limiting 
transition (Section 5.3). In non-local media (Section 
4), as well as in the classical system, the heat signal 
propagates with an infinitely high speed. With the 
‘diffusional’ law of limiting transition (Section 5.2), 
the discrete transfer equation yields partial differential 
equations which also determine an infinitely large 
speed of heat signal propagation. 

In the limiting cases the generalized transfer equa- 
tion for a medium with memory (8) can give both 
the classical parabolic-type transfer equation and the 
hyperbolic-type ‘telegraph’ equation with distributed 
sources (11). The latter also follows from the discrete 
transfer equation (20) obeying the ‘wave’ law of limit- 
ing transition. The equation of transfer in a medium 
with memory takes into account the local non-equi- 
librium state of the system, but at the same time pre- 
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supposes its spatial locality. In non-local media the 
process of transfer is respectively described by non- 
local equations (see Section 4). Note that for non-local 
systems one should use the law of energy conservation 
either in integral form, equation (14), or in differential 
form, but with non-local terms taken into account, 
equation (17). 

Transfer equations (20) and the interrelation 
between the heat flux and temperature (the gen- 
eralization of the Fourier law) in a discrete form, 
equation (21), take into consideration both the local 
non-equilibrium state of the system and its spatial 
non-locality. These equations can be used directly in 
discrete form, which is especially convenient for the 
numerical simulation of transfer processes and the 
analysis of the chaotic dynamics of non-linear system. 
Moreover, after the corresponding expansion into the 
Taylor series in powers of r and h discrete transfer 
equations (20) and (21) yield partial differential equa- 
tions of different types. The type of these equations is 
determined by the law of limiting transition, i.e. by 
the interrelation between the temporal 7 and spatial h 
scales of the internal structure of the medium. Of 
greatest interest is the ‘diffusional’ law of limiting tran- 
sition, when the thermal diffusivity (diffusion) 
cofficient CI = h2/7 remains finite for 7, h + 0, and the 
‘wave’ law when the speed of heat wave (heat signal) 
propagation c = h/r is finite, i.e. c = const < co, if 2, 
h + 0. In the case of the ‘diffusional’ law of limiting 
transition, equations (20) and (21) give parabolic- 
type equations and, in particular, the classical heat 
conduction (diffusion) equation and the Fourier law, 
whereas with the ‘wave’ law they yield hyperbolic- 
type equations, for example the ‘telegraph’ equation 
(11) and the Maxwell-Cattaneo law, equation (10). 

The non-local equations should be used for ana- 
lysing transfer processes when the approximations, on 
which the classical theory is based (see Section 2), are 
not fulfilled. Such a situation can take place in differ- 
ent kinds of high-speed processes, for example when 
a normal zone propagates along a superconductor, 
during the propagation of the waves of phase tran- 
sition, and also of detonation and combustion waves 
[7]. Application of supershort laser radiation also 
leads to non-local phenomena, e.g. in plasma [12], in 
solids [13], and in metals (see the refs. [5, 71). The 
non-local equations also describe transfer processes 
in systems with a complex heterogeneous structure, 

such as polymers, capillary-porous media, liquid 
crystals, porous rocks (sandstone and limestone), 
heterogeneous catalysts, etc. The effect of local non- 
equilibrium state is especially perceptible at low tem- 
peratures in superconductors and superfluid liquids 
[2, 5-71. The spatial non-locality is characteristic for 
ecological systems in which the biomass exists in the 
form of separate discrete cells, species, populations, 
etc. 
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